Journal of Soft Computing in Civil Engineering (Jan 2024)
Comparison of Various Machine Learning Models for Estimating Construction Projects Sales Valuation Using Economic Variables and Indices
Abstract
The capability of various machine learning techniques in predicting construction project profit in residential buildings using a combination of economic variables and indices (EV&Is) and physical and financial variables (P&F) as input variables remain uncertain. Although recent studies have primarily focused on identifying the factors influencing the sales of construction projects due to their significant short-term impact on a country's economy, the prediction of these parameters is crucial for ensuring project sustainability. While techniques such as regression and artificial neural networks have been utilized to estimate construction project sales, limited research has been conducted in this area. The application of machine learning techniques presents several advantages over conventional methods, including reductions in cost, time, and effort. Therefore, this study aims to predict the sales valuation of construction projects using various machine learning approaches, incorporating different EV&Is and P&F as input features for these models and subsequently generating the sales valuation as the output. This research will undertake a comparative analysis to investigate the efficiency of the different machine learning models, identifying the most effective approach for estimating the sales valuation of construction projects. By leveraging machine learning techniques, it is anticipated that the accuracy of sales valuation predictions will be enhanced, ultimately resulting in more sustainable and successful construction projects. In general, the findings of this research reveal that the extremely randomized trees model delivers the best performance, while the decision tree model exhibits the least satisfactory performance in predicting the sales valuation of construction projects.
Keywords