Dyna (Oct 2018)

A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering

  • Estrella Natali Borja-Goyeneche,
  • Jhon Jairo Olaya-Florez

DOI
https://doi.org/10.15446/dyna.v85n207.73304
Journal volume & issue
Vol. 85, no. 207
pp. 192 – 197

Abstract

Read online

This work researches the influence of the nickel content on the structural and anticorrosive properties of ZrSiTiN films deposited by means of reactive co-sputtering on alloys of Ti6Al4V. The morphology and structure were analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the chemical composition was identified via X-ray scattering spectroscopy (EDS). The corrosion resistance was studied using potentiodynamic polarization (PP) tests employing a 3.5% by weight NaCl solution. In the films, an increase of Ni up to 6.97 at% was observed, while in XRD the FCC phase of (Zr, Ti) N was identified, with a mixed orientation in planes (111) and (200), which tended to diminish with the increase of Ni. Finally, with the addition of Ni, the corrosion current densities were reduced from 5.56 𝑥 10−8 to 2.64 𝑥 10−9 𝐴/𝑐m2. The improvement in the corrosion resistance is due to the effect of the Ni on the microstructure of the system (Zr, Ti) N, which can improve the quality of the passive film and prevent crystalline defects and corrosion zones.

Keywords