Earth, Planets and Space (Feb 2024)

Reconstruction of the deformation history of an active fault: implications from the Atera Fault, Central Japan

  • Horst Zwingmann,
  • Masakazu Niwa,
  • Andrew Todd,
  • Martin Saunders

DOI
https://doi.org/10.1186/s40623-024-01973-1
Journal volume & issue
Vol. 76, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Atera Fault clay gouges were collected for age dating near Kawaue, Nakatsugawa City, Central Japan, and the results integrated within its complex geological history. The results form an internally consistent data set constrained by extensive geochronological data (AFTA, ZFTA, CHIME) and support the application of gouge dating in constraining timing of brittle deformation in Central Japan. The Atera illite age data complete recently obtained limited illite fault gouge age data from underground exposure in the Toki Granite; the new illite age data are identical within error. The age of the heterogenous welded tuff breccia zone (Atera 1) ranges from 40.6 ± 1.0 Ma to 60.0 ± 1.4 Ma, whereas ages of the fault core gouge sample (Atera 2) range from 41.8 ± 1.0 Ma to 52.7 ± 1.2 Ma. The finest < 0.1 µm fraction of the fault breccia and fault core gouge yield ages around 41 Ma, identical within error. The new illite age data indicate brittle faulting and a following geothermal event occurring in the Paleogene–Eocene, similar to the nearby Toki Granite area and confirm they were both synchronous with a post-intrusive pluton exhumation. The Atera Fault illite age data provide additional insights into an integrated, regional-scale record of the tectonic displacement of Central Japan and might be influenced by large-scale tectonic processes such as the Emperor sea mount kink around 55 to 46 Ma with fault initiation around 50 Ma and brittle fault cessation or reactivation around 40 Ma in the Eocene. Graphical Abstract

Keywords