Journal of Personalized Medicine (Mar 2023)

The Progress and Pitfalls of Pharmacogenetics-Based Precision Medicine in Schizophrenia Spectrum Disorders: A Systematic Review and Meta-Analysis

  • Yuxin Teng,
  • Amrit Sandhu,
  • Edith J. Liemburg,
  • Elnaz Naderi,
  • Behrooz Z. Alizadeh

DOI
https://doi.org/10.3390/jpm13030471
Journal volume & issue
Vol. 13, no. 3
p. 471

Abstract

Read online

The inadequate efficacy and adverse effects of antipsychotics severely affect the recovery of patients with schizophrenia spectrum disorders (SSD). We report the evidence for associations between pharmacogenetic (PGx) variants and antipsychotics outcomes, including antipsychotic response, antipsychotic-induced weight/BMI gain, metabolic syndrome, antipsychotic-related prolactin levels, antipsychotic-induced tardive dyskinesia (TD), clozapine-induced agranulocytosis (CLA), and drug concentration level (pharmacokinetics) in SSD patients. Through an in-depth systematic search in 2010–2022, we identified 501 records. We included 29 meta-analyses constituting pooled data from 298 original studies over 69 PGx variants across 39 genes, 4 metabolizing phenotypes of CYP2D9, and 3 of CYP2C19. We observed weak unadjusted nominal significant (p DRD1, DRD2, DRD3, HTR1A, HTR2A, HTR3A, and COMT (10 variants) on antipsychotic response; DRD2, HTR2C, BDNF, ADRA2A, ADRB3, GNB3, INSIG2, LEP, MC4R, and SNAP25 (14 variants) on weight gain; HTR2C (one variant) on metabolic syndrome; DRD2 (one variant) on prolactin levels; COMT and BDNF (two variants) on TD; HLA-DRB1 (one variant) on CLA; CYP2D6 (four phenotypes) and CYP2C19 (two phenotypes) on antipsychotics plasma levels. In the future, well-designed longitudinal naturalistic multi-center PGx studies are needed to validate the effectiveness of PGx variants in antipsychotic outcomes before establishing any reproducible PGx passport in clinical practice.

Keywords