Applied Sciences (Jan 2023)

High-Performance Microwave Photonic Transmission Enabled by an Adapter for Fundamental Mode in MMFs

  • Yilan Wang,
  • Linbo Yang,
  • Zhiqun Yang,
  • Yaping Liu,
  • Zhanhua Huang,
  • Lin Zhang

DOI
https://doi.org/10.3390/app13031794
Journal volume & issue
Vol. 13, no. 3
p. 1794

Abstract

Read online

Microwave photonic links (MPLs) have long been considered as an excellent way for radio frequency (RF) transmission due to their advantages such as light weight, high bandwidth, low cost and large spurious-free dynamic range (SFDR). However, the effective mode-field area (Aeff) of the single-mode fiber (SMF) used in the traditional MPL is not large, so the MPL based on SMF have relatively strong nonlinearity, which limits the processing power of SMFs to a level of few milliwatts. Few-mode fibers (FMFs) have been applied in MPL as an alternative due to the larger Aeff, and photonic lanterns are used simultaneously to excite the high-order mode of FMFs for RF signal transmission. However, the photonic lantern could bring additional insertion loss, and the production cost of FMFs is high, so we propose an MPL based on multimode fibers (MMFs) with mode field adapters (MFAs). Since MMFs have larger Aeff, the nonlinearity of the link can be greatly reduced. And matched MFAs realized by reverse tapering, to excite only the fundamental mode in MMFs to reduce the crosstalk, which are very stable. As a result, the stimulated Brillouin scattering threshold and SFDR are improved by 5 dB and 14.5 dB, respectively.

Keywords