PLoS ONE (Jan 2016)
Practical Application of Anatomy of the Oral Cavity in Forensic Facial Reconstruction.
Abstract
The oral cavity's importance in defining the facial region makes it a primary feature for forensic facial reconstruction (FFR). The aim of this study is to construct a pattern of reference for dimensions and proportions of the lips and establish parameters that may help estimate the vermilion borders' height dimensions and the mouth's width. By means of cone beam computed tomography, divided into two samples: sample 1 (n = 322; 137 male, 185 female) verified the linear distances delimited by anatomical landmarks in soft tissue. The sample 2 (n = 108; 40 male, 68 female), verified the proportions among the height of the vermilion borders, width of the mouth, and linear distances between craniometric landmarks in hard tissues, both from a Brazilian database. The measurements were completed using OsiriX, and the results were analyzed by means of descriptive statistics at a level of significance of 5%. The height of the vermilion borders corresponded to approximately 26% of the width of the mouth. The width of the mouth increased over the course of time in men and remained stable in women. In men, a mean intercanine distance of 75% of the total mouth's width was found; for women, it was 80%. The parameters of the relations between soft and hard tissues in the oral cavity region presented that the distance between landmarks ID-SM (Infradentale-Supramentale) corresponded to 55% of the height of the vermilion borders of the mouth for both sexes, while the distance between landmarks PM-SD (Philtrum medium-Supradentale) corresponded to 85% in men and 88% in women. Mean values of 97% of the width of the mouth in women and 93% in men were attributed to the distance between the mentonian foramina. It was not possible to estimate the height of the labial vermilion borders by the bone measurements, FIs-Fli (Foramen incisivus superius-inferius) and NS-GN (Nasospinale-Gnathion). Profound knowledge of the anatomy and morphology of the oral cavity may contribute to increasing the precision of FFRs and help with human identification.