Applied Sciences (Jan 2023)
Research on Blast Furnace Tuyere Image Anomaly Detection, Based on the Local Channel Attention Residual Mechanism
Abstract
The channel attention mechanism is widely used in deep learning. However, the existing channel attention mechanism directly performs the global average pooling and then full connection for all channels, which causes the local information to be ignored and the feature information cannot be reasonably assigned with the proper weights. This paper proposed a local channel attention module, based on the channel attention. This module focuses on the local information of the feature image, obtains the weight of each regional channel through convolution, and then integrates the information, so that the regional information can be fully utilized. Moreover, the local channel attention module is combined with the residual module, and the local channel attention residual network LSERNet is constructed to detect the abnormal state of the blast furnace tuyere image. With sufficient experiments on the collected datasets of the blast furnace tuyere, the results show that the proposed method can efficiently extract the feature information, and the recognition accuracy of the LSERNet model reached 98.59%. Further, our model achieved the highest accuracy, compared with SE-ResNet50, ResNet50, LSE-ResNeXt, SE-ResNeXt, and ResNeXt models.
Keywords