AI (Jul 2024)
Dynamic Programming-Based White Box Adversarial Attack for Deep Neural Networks
Abstract
Recent studies have exposed the vulnerabilities of deep neural networks to some carefully perturbed input data. We propose a novel untargeted white box adversarial attack, the dynamic programming-based sub-pixel score method (SPSM) attack (DPSPSM), which is a variation of the traditional gradient-based white box adversarial approach that is limited by a fixed hamming distance using a dynamic programming-based structure. It is stimulated using a pixel score metric technique, the SPSM, which is introduced in this paper. In contrast to the conventional gradient-based adversarial attacks, which alter entire images almost imperceptibly, the DPSPSM is swift and offers the robustness of manipulating only a small number of input pixels. The presented algorithm quantizes the gradient update with a score generated for each pixel, incorporating contributions from each channel. The results show that the DPSPSM deceives the model with a success rate of 30.45% in the CIFAR-10 test set and 29.30% in the CIFAR-100 test set.
Keywords