An ANFIS-Based Modeling Comparison Study for Photovoltaic Power at Different Geographical Places in Mexico
Nun Pitalúa-Díaz,
Fernando Arellano-Valmaña,
Jose A. Ruz-Hernandez,
Yasuhiro Matsumoto,
Hussain Alazki,
Enrique J. Herrera-López,
Jesús Fernando Hinojosa-Palafox,
A. García-Juárez,
Ricardo Arturo Pérez-Enciso,
Enrique Fernando Velázquez-Contreras
Affiliations
Nun Pitalúa-Díaz
Departamento de Ingeniería Industrial, Departamento de Ingeniería Química y Metalurgia, Departamento de Investigación en Física, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro. Hermosillo 83000, Sonora C.P., Mexico
Fernando Arellano-Valmaña
Facultad de Ingeniería, Universidad Autónoma del Carmen, Calle 56 No. 4 Esq. Avenida Concordia Col. Benito Juárez C.P. 24180 Cd. Del Carmen, Campeche, Mexico
Jose A. Ruz-Hernandez
Facultad de Ingeniería, Universidad Autónoma del Carmen, Calle 56 No. 4 Esq. Avenida Concordia Col. Benito Juárez C.P. 24180 Cd. Del Carmen, Campeche, Mexico
Yasuhiro Matsumoto
Departamento de Ingeniería Eléctrica, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticoman, C.P. 07360 Ciudad de México, CDMX, Mexico
Hussain Alazki
Facultad de Ingeniería, Universidad Autónoma del Carmen, Calle 56 No. 4 Esq. Avenida Concordia Col. Benito Juárez C.P. 24180 Cd. Del Carmen, Campeche, Mexico
Enrique J. Herrera-López
Biotecnología Industrial, Sublínea Bioelectrónica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Col. El Bajío del Arenal, C.P. 45019 Zapopan Jalisco, Mexico
Jesús Fernando Hinojosa-Palafox
Departamento de Ingeniería Industrial, Departamento de Ingeniería Química y Metalurgia, Departamento de Investigación en Física, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro. Hermosillo 83000, Sonora C.P., Mexico
A. García-Juárez
Departamento de Ingeniería Industrial, Departamento de Ingeniería Química y Metalurgia, Departamento de Investigación en Física, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro. Hermosillo 83000, Sonora C.P., Mexico
Ricardo Arturo Pérez-Enciso
Departamento de Ingeniería Industrial, Departamento de Ingeniería Química y Metalurgia, Departamento de Investigación en Física, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro. Hermosillo 83000, Sonora C.P., Mexico
Enrique Fernando Velázquez-Contreras
Departamento de Ingeniería Industrial, Departamento de Ingeniería Química y Metalurgia, Departamento de Investigación en Física, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro. Hermosillo 83000, Sonora C.P., Mexico
In this manuscript, distinct approaches were used in order to obtain the best electrical power estimation from photovoltaic systems located at different selected places in Mexico. Multiple Linear Regression (MLR) and Gradient Descent Optimization (GDO) were applied as statistical methods and they were compared against an Adaptive Neuro-Fuzzy Inference System (ANFIS) as an intelligent technique. The data gathered involved solar radiation, outside temperature, wind speed, daylight hour and photovoltaic power; collected from on-site real-time measurements at Mexico City and Hermosillo City, Sonora State. According to our results, all three methods achieved satisfactory performances, since low values were obtained for the convergence error. The GDO improved the MLR results, minimizing the overall error percentage value from 7.2% to 6.9% for Sonora and from 2.0% to 1.9% for Mexico City; nonetheless, ANFIS overcomes both statistical methods, achieving a 5.8% error percentage value for Sonora and 1.6% for Mexico City. The results demonstrated an improvement by applying intelligent systems against statistical techniques achieving a lesser mean average error.