Buildings (Oct 2021)
Light Transmitting Concrete: A Review
Abstract
Recently, research attention has been drawn to the application of novel, unique, and innovative types of construction materials to fulfil diverse objectives associated with the ground-breaking concept of “Greener Architecture”, in order to improve the overall economic value and quality of construction. Among these revolutionary structural building materials is light-transmitting concrete, also referred to as translucent or transparent concrete. This material is based on the concept of nano-optics, which allows exterior light to transmit through internal spaces in which light elements, namely optical fibres, are incorporated during the material’s manufacture. The current review assesses earlier studies of translucent concrete, focusing on its applications, and the appropriate ratio and arrangement pattern of optical fibres. This study also investigated the light-transmitting, mechanical, thermal, and energy-saving properties of translucent concrete by analysing research conducted during the past decade. However, numerous material restrictions and research gaps were found in the earlier literature on this concrete. The principal restrictions relate to the material’s low material strength and the identification of the optimum ratio of fibres. The main gaps identified among the reviewed research investigations relate to tests aiming to identify the influence of dissimilar ratios of optical fibres on the material’s strength and energy-saving properties. In the current review, we also identify and recommend future areas of research, and provide suggestions to address the existing research gaps. Finally, we review the types of translucent materials, their properties, and their advantages and disadvantages, and provide illustrations and value-added applications. The aim is to promote translucent concrete as an attractive, promising, and innovative building material for the construction industry.
Keywords