eXPRESS Polymer Letters (Mar 2021)
Biocarbon reinforced polypropylene composite: An investigation of mechanical and filler behavior through advanced dynamic atomic force microscopy and X-ray micro CT
Abstract
Polymer composites were manufactured using biocarbon particles as a reinforcing filler to improve the mechanical and thermal properties. However, a detailed examination of dispersion and agglomeration of filler is essential to correlate the filler/matrix and the filler/filler interactions with the mechanical properties of the product. We investigated the variations of mechanical, agglomeration behavior of fillers, and thermal properties of polypropylene (PP)/coconut shell biocarbon (CSB) composites. PP/CSB composites were prepared by melt mixing process varying the CSB content (0 to 20 wt%) using a Brabender mixer. The nanomechanical mapping of the composites studied using Atomic Force Microscopy revealed an increase in Young’s modulus from 1.6 to 2.9 GPa when CSB loading increased from 0 to 20 wt%. The dispersion and agglomeration of CSB filler in the PP matrix were investigated using 3D reconstructed images with the help of X-ray micro-CT, and a dedicated 3D reconstruction software. The thermal stability of the PP/CSB composites also improved with an increase in CSB content in PP.
Keywords