Scientific Reports (Jun 2023)

Integration of force and IMU sensors for developing low-cost portable gait measurement system in lower extremities

  • Udomporn Manupibul,
  • Ratikanlaya Tanthuwapathom,
  • Wimonrat Jarumethitanont,
  • Panya Kaimuk,
  • Weerawat Limroongreungrat,
  • Warakorn Charoensuk

DOI
https://doi.org/10.1038/s41598-023-37761-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Gait analysis is the method to accumulate walking data. It is useful in diagnosing diseases, follow-up of symptoms, and rehabilitation post-treatment. Several techniques have been developed to assess human gait. In the laboratory, gait parameters are analyzed by using a camera capture and a force plate. However, there are several limitations, such as high operating costs, the need for a laboratory and a specialist to operate the system, and long preparation time. This paper presents the development of a low-cost portable gait measurement system by using the integration of flexible force sensors and IMU sensors in outdoor applications for early detection of abnormal gait in daily living. The developed device is designed to measure ground reaction force, acceleration, angular velocity, and joint angles of the lower extremities. The commercialized device, including the motion capture system (Motive-OptiTrack) and force platform (MatScan), is used as the reference system to validate the performance of the developed system. The results of the system show that it has high accuracy in measuring gait parameters such as ground reaction force and joint angles in lower limbs. The developed device has a strong correlation coefficient compared with the commercialized system. The percent error of the motion sensor is below 8%, and the force sensor is lower than 3%. The low-cost portable device with a user interface was successfully developed to measure gait parameters for non-laboratory applications to support healthcare applications.