Advanced Science (Sep 2023)

eIF3f Mediates SGOC Pathway Reprogramming by Enhancing Deubiquitinating Activity in Colorectal Cancer

  • Qihao Pan,
  • Fenghai Yu,
  • Huilin Jin,
  • Peng Zhang,
  • Xiaoling Huang,
  • Jingxuan Peng,
  • Xiaoshan Xie,
  • Xiangli Li,
  • Ning Ma,
  • Yue Wei,
  • Weijie Wen,
  • Jieping Zhang,
  • Boyu Zhang,
  • Hongyan Yu,
  • Yuanxun Xiao,
  • Ran‐yi Liu,
  • Qingxin Liu,
  • Xiangqi Meng,
  • Mong‐Hong Lee

DOI
https://doi.org/10.1002/advs.202300759
Journal volume & issue
Vol. 10, no. 27
pp. n/a – n/a

Abstract

Read online

Abstract Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7β‐mediated PHGDH ubiquitination through GSK3β deactivation, and eIF3f antagonizes FBXW7β‐mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC‐mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine–Glycine–One–Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f‐PHGDH axis in CRC.

Keywords