PLoS ONE (Jan 2021)
One size fits all?: A simulation framework for face-mask fit on population-based faces.
Abstract
The use of face masks by the general population during viral outbreaks such as the COVID-19 pandemic, although at times controversial, has been effective in slowing down the spread of the virus. The extent to which face masks mitigate the transmission is highly dependent on how well the mask fits each individual. The fit of simple cloth masks on the face, as well as the resulting perimeter leakage and face mask efficacy, are expected to be highly dependent on the type of mask and facial topology. However, this effect has, to date, not been adequately examined and quantified. Here, we propose a framework to study the efficacy of different mask designs based on a quasi-static mechanical model of the deployment of face masks onto a wide range of faces. To illustrate the capabilities of the proposed framework, we explore a simple rectangular cloth mask on a large virtual population of subjects generated from a 3D morphable face model. The effect of weight, age, gender, and height on the mask fit is studied. The Centers for Disease Control and Prevention (CDC) recommended homemade cloth mask design was used as a basis for comparison and was found not to be the most effective design for all subjects. We highlight the importance of designing masks accounting for the widely varying population of faces. Metrics based on aerodynamic principles were used to determine that thin, feminine, and young faces were shown to benefit from mask sizes smaller than that recommended by the CDC. Besides mask size, side-edge tuck-in, or pleating, of the masks as a design parameter was also studied and found to have the potential to cause a larger localized gap opening.