BMC Plant Biology (Dec 2022)

Analysis of proteomic changes in cassava cv. Kasetsart 50 caused by Sri Lankan cassava mosaic virus infection

  • Wanwisa Siriwan,
  • Nuannapa Hemniam,
  • Nattachai Vannatim,
  • Srihunsa Malichan,
  • Somruthai Chaowongdee,
  • Sittiruk Roytrakul,
  • Sawanya Charoenlappanit,
  • Aroonothai Sawwa

DOI
https://doi.org/10.1186/s12870-022-03967-1
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Sri Lankan cassava mosaic virus (SLCMV) is a plant virus causing significant economic losses throughout Southeast Asia. While proteomics has the potential to identify molecular markers that could assist the breeding of virus resistant cultivars, the effects of SLCMV infection in cassava have not been previously explored in detail. Results Liquid Chromatography-Tandem Mass Spectrometry (LC/MS–MS) was used to identify differentially expressed proteins in SLCMV infected leaves, and qPCR was used to confirm changes at mRNA levels. LC/MS–MS identified 1,813 proteins, including 479 and 408 proteins that were upregulated in SLCMV-infected and healthy cassava plants respectively, while 109 proteins were detected in both samples. Most of the identified proteins were involved in biosynthetic processes (29.8%), cellular processes (20.9%), and metabolism (18.4%). Transport proteins, stress response molecules, and proteins involved in signal transduction, plant defense responses, photosynthesis, and cellular respiration, although present, only represented a relatively small subset of the detected differences. RT-qPCR confirmed the upregulation of WRKY 77 (A0A140H8T1), WRKY 83 (A0A140H8T7), NAC 6 (A0A0M4G3M4), NAC 35 (A0A0M5JAB4), NAC 22 (A0A0M5J8Q6), NAC 54 (A0A0M4FSG8), NAC 70 (A0A0M4FEU9), MYB (A0A2C9VER9 and A0A2C9VME6), bHLH (A0A2C9UNL9 and A0A2C9WBZ1) transcription factors. Additional upregulated transcripts included receptors, such as receptor-like serine/threonine-protein kinase (RSTK) (A0A2C9UPE4), Toll/interleukin-1 receptor (TIR) (A0A2C9V5Q3), leucine rich repeat N-terminal domain (LRRNT_2) (A0A2C9VHG8), and cupin (A0A199UBY6). These molecules participate in innate immunity, plant defense mechanisms, and responses to biotic stress and to phytohormones. Conclusions We detected 1,813 differentially expressed proteins infected cassava plants, of which 479 were selectively upregulated. These could be classified into three main biological functional groups, with roles in gene regulation, plant defense mechanisms, and stress responses. These results will help identify key proteins affected by SLCMV infection in cassava plants.

Keywords