Energy Informatics (Aug 2024)

Application of KNN algorithm incorporating Gaussian functions in green and high-quality development of cities empowered by circular economy

  • Zhezhou Li,
  • Hexiang Huang

DOI
https://doi.org/10.1186/s42162-024-00372-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 18

Abstract

Read online

Abstract A growing number of industries have started to adapt to the circular economy since the concept's introduction. Therefore, in order to accurately evaluate the development level of circular economy, the circular economy prediction model based on support vector machine-Gaussian K-nearest neighbor is proposed. This model first uses the improved K-nearest neighbor algorithm based on Gaussian function to classify the index data of various levels, and then uses Support Vector Machine to make predictions based on relevant data. According to the experimental findings, the model's average prediction accuracy for each level of indicator was approximately 98.1%, 98.8%, 94.9%, and 95.9% for the levels of industrial development, resource consumption, ecological protection, and resource recycling and reuse, respectively. This prediction accuracy was higher than that of the multi-vector autoregressive model and the grey prediction model. The average prediction accuracy of the multi-vector autoregressive model, the grey prediction model, and the support vector machine-Gaussian K-nearest neighbor-based model in predicting the overall development level of the circular economy were about 94.3%, 96.2%, and 99.3%, respectively, with average recalls of about 86.6%, 87.7%, and 89.1%, and the average F1-measure was about 0.88, 0.89, and 0.92. Moreover, the average relative error based on the support vector machine-Gaussian K-nearest neighbour model was only approximately 0.6%, which was lower than the 3.7% and 2.8% for the multi-vector autoregressive model and the grey prediction model, respectively. Meanwhile, compared with the existing time series analysis techniques, the proposed SVM-Gaussian K nearest neighbor model fitted up to 0.95, which achieved good prediction performance. According to the above data, the support vector machine-Gaussian K-nearest neighbour model has the highest accuracy in predicting the amount of development of the circular economy.

Keywords