Bone & Joint Research (Jan 2023)

Transcriptome-wide association study identifies new susceptibility genes for degenerative cervical spondylosis

  • Jiawen Xu,
  • Haibo Si,
  • Yi Zeng,
  • Yuangang Wu,
  • Shaoyun Zhang,
  • Yuan Liu,
  • Mingyang Li,
  • Bin Shen

DOI
https://doi.org/10.1302/2046-3758.121.BJR-2022-0225.R1
Journal volume & issue
Vol. 12, no. 1
pp. 80 – 90

Abstract

Read online

AimsDegenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.MethodsPredicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.ResultsThe TWAS detected 420 DCS genes with p < 0.05 in skeletal muscle, such as ribosomal protein S15A (RPS15A) (PTWAS = 0.001), and 110 genes in whole blood, such as selectin L (SELL) (PTWAS = 0.001). Comparison with the DCS RNA expression profile identified 12 common genes, including Apelin Receptor (APLNR) (PTWAS = 0.001, PDEG = 0.025). In total, 148 DCS-enriched Gene Ontology (GO) terms were identified, such as mast cell degranulation (GO:0043303); 15 DCS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, such as the sphingolipid signalling pathway (ko04071). Nine terms, such as degradation of the extracellular matrix (R-HSA-1474228), were common to the TWAS enrichment results and the RNA expression profile.ConclusionOur results identify putative susceptibility genes; these findings provide new ideas for exploration of the genetic mechanism of DCS development and new targets for preclinical intervention and clinical treatment.Cite this article: Bone Joint Res 2023;12(1):80–90.

Keywords