Sensors (Sep 2021)

Optimized Design of Neural Networks for a River Water Level Prediction System

  • Miriam López Lineros,
  • Antonio Madueño Luna,
  • Pedro M. Ferreira,
  • Antonio E. Ruano

DOI
https://doi.org/10.3390/s21196504
Journal volume & issue
Vol. 21, no. 19
p. 6504

Abstract

Read online

In this paper, a Multi-Objective Genetic Algorithm (MOGA) framework for the design of Artificial Neural Network (ANN) models is used to design 1-step-ahead prediction models of river water levels. The design procedure is a near-automatic method that, given the data at hand, can partition it into datasets and is able to determine a near-optimal model with the right topology and inputs, offering a good performance on unseen data, i.e., data not used for model design. An example using more than 11 years of water level data (593,178 samples) of the Carrión river collected at Villoldo gauge station shows that the MOGA framework can obtain low-complex models with excellent performance on unseen data, achieving an RMSE of 2.5 × 10−3, which compares favorably with results obtained by alternative design.

Keywords