Epidemics (Sep 2022)
Modelling lymphatic filariasis elimination in American Samoa: GEOFIL predicts need for new targets and six rounds of mass drug administration
Abstract
Background: As part of the global effort to eliminate the debilitating mosquito-borne disease lymphatic filariasis (LF), seven rounds of two-drug (diethylcarbamazine and albendazole) mass drug administration (MDA) were conducted in American Samoa over 2000–2006. However subsequent surveys demonstrated ongoing transmission prompting further rounds of three-drug (diethylcarbamazine, albendazole, and ivermectin) MDA starting in 2018. Methods: We extend GEOFIL, a spatially-explicit agent-based model of LF transmission to predict the probability and timing of the local elimination or resurgence of LF for different MDA scenarios starting in 2018: two-drug vs. three-drug MDA, two to seven annual rounds, and population coverage rates of 55–75%. We developed an interactive visualisation comparing the effect of MDA strategies on different outcomes. Results: At least six annual rounds of three-drug MDA treating 75% of the population were required to achieve LF elimination in American Samoa by 2035 in > 50% of simulations. In scenarios where MDA did not achieve elimination, prevalence doubled approximately every three years, even if MDA reduced antigen prevalence to <1% (the target recommended by the World Health Organisation). Prevalence in six- and seven-year-old children was approximately one quarter of the prevalence in the general population. Conclusion: The three rounds of three-drug MDA conducted in 2018, 2019, and 2021 may have come close to WHO targets but are unlikely to interrupt LF transmission in American Samoa without further interventions. The recommended post-MDA surveillance strategy of testing primarily six and seven-year-old children will delay detection of resurgence compared to population representative surveys. The recommended elimination targets (reducing antigen prevalence below 0.5%, 1%, or 2%) may not be sufficient to interrupt transmission in countries with LF epidemiology like American Samoa. Alternative surveillance strategies and interventions designed to identify and eliminate spatially localized residual transmission may need to be considered. Interactive visualisations may assist decision-makers to choose locally appropriate strategies.