Remote Sensing (Apr 2025)

Multi-Directional Dual-Window Method Using Fractional Optimal-Order Fourier Transform for Hyperspectral Anomaly Detection

  • Jiahui Wang,
  • Fang Li,
  • Liguo Wang,
  • Jianjun He

DOI
https://doi.org/10.3390/rs17081321
Journal volume & issue
Vol. 17, no. 8
p. 1321

Abstract

Read online

Anomaly detection plays a vital role in the processing of hyperspectral images and has garnered significant attention recently. Hyperspectral images are characterized by their “integration of spatial and spectral information” as well as their rich spectral content. Therefore, effectively combining the spatial and spectral information of images and thoroughly mining the latent structural features of the data to achieve high-precision detection are significant challenges in hyperspectral anomaly detection. Traditional detection methods, which rely solely on raw spectral features, often face limitations in enhancing target signals and suppressing background noise. To address these issues, we propose an innovative hyperspectral anomaly detection approach based on the fractional optimal-order Fourier transform combined with a multi-directional dual-window detector. First, a new criterion for determining the optimal order of the fractional Fourier transform is introduced. By applying the optimal fractional Fourier transform, prominent features are extracted from the hyperspectral data. Subsequently, band selection is applied to the transformed data to remove redundant information and retain critical features. Additionally, a multi-directional sliding dual-window RAD detector is designed. This detector fully utilizes the spectral information of the pixel under test along with its neighboring information in eight directions to enhance detection accuracy. Furthermore, a spatial–spectral combined saliency-weighted strategy is developed to fuse the detection results from various directions using weighted contributions, further improving the distinction between anomalies and the background. The proposed method’s experimental results on six classic datasets demonstrate that it outperforms existing detectors, achieving superior detection performance.

Keywords