Nauka ta progres transportu (Dec 2016)

COAL DUST EMISSION PROBLEM

  • M. M. Biliaiev,
  • M. O. Oladipo

DOI
https://doi.org/10.15802/stp2016/90450
Journal volume & issue
Vol. 66, no. 6
pp. 17 – 24

Abstract

Read online

Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by rail were created. A way to protect the atmosphere from pollution during the emission of bulk cargoes from the rail car, which is based on the principle of the air injection, was developed. Practical value. The efficient numerical models which can be used in the development of environmental protection measures in the operation of railway transport were considered. The proposed model allows calculating 2D dynamics of wind flow, taking into account the installed air injection, and mass transfer process of pollutants in the atmosphere.

Keywords