Molecularly Imprinted Ratiometric Fluorescent Sensors for Analysis of Pharmaceuticals and Biomarkers
Jingyi Yan,
Siwu Liu,
Dani Sun,
Siyuan Peng,
Yongfei Ming,
Abbas Ostovan,
Zhihua Song,
Jinmao You,
Jinhua Li,
Huaying Fan
Affiliations
Jingyi Yan
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
Siwu Liu
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
Dani Sun
Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
Siyuan Peng
School of Life Science, Ludong University, Yantai 264025, China
Yongfei Ming
School of Life Science, Ludong University, Yantai 264025, China
Abbas Ostovan
Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
Zhihua Song
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
Jinmao You
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
Jinhua Li
Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
Huaying Fan
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
Currently, analyzing pharmaceuticals and biomarkers is crucial for ensuring medication safety and protecting life and health, and there is an urgent need to develop new and efficient analytical techniques in view of the limitations of traditional analytical methods. Molecularly imprinted ratiometric fluorescent (MI-RFL) sensors have received increasing attention in the field of analytical detection due to their high selectivity, sensitivity and anti-interference ability, short response time, and visualization. This review summarizes the recent advances of MI-RFL sensors in the field of pharmaceuticals and biomarkers detection. Firstly, the fluorescence sources and working mechanisms of MI-RFL sensors are briefly introduced. On this basis, new techniques and strategies for preparing molecularly imprinted polymers, such as dummy template imprinting, nanoimprinting, multi-template imprinting, and stimulus-responsive imprinting strategies, are presented. Then, dual- and triple-emission types of fluorescent sensors are introduced. Subsequently, specific applications of MI-RFL sensors in pharmaceutical analysis and biomarkers detection are highlighted. In addition, innovative applications of MI-RFL sensors in point-of-care testing are discussed in-depth. Finally, the challenges of MI-RFL sensors for analysis of pharmaceuticals and biomarkers are proposed, and the research outlook and development trends of MI-RFL sensors are prospected.