Journal of Hebei University of Science and Technology (Oct 2016)
Research on feature extraction and classification of AE signals of fibers' tensile failure based on HHT and SVM
Abstract
In order to study the feature extraction and recognition method of fibers' tensile failure, AE technology is used to collect AE signals of fiber bundle's tensile fracture of two kinds of fibers of Aramid 1313 and viscose. A transform called wavelet is used to deal with the signals to reduce noise. A method called Hilbert-Huang transform (HHT) is used to extract characteristic frequencies of the signals after the noise is reduced. And a classification method called Least Squares support vector machines (LSSVM) is used for the classification and recognition of characteristic frequencies of the two kinds of fibers. The results show that wavelet de-noise method can reduce some noise of the signals. Hilbert spectrum can reflect fracture circumstances of the two kinds of fibers in the time dimension to some extent. Characteristic frequencies' extraction can be done from marginal spectrum. The LSSVM can be used for the classification and recognition of characteristic frequencies. The recognition rates of Aramid 1313 and viscose reach 40%, 80% respectively, and the total recognition rate reaches 60%.
Keywords