Buildings (Jul 2024)

Monitoring Data Fusion Model for Subsoil Layer Deformation Prediction

  • Huiguo Wu,
  • Yuedong Wu,
  • Jian Liu,
  • Lei Zhang,
  • Yongyang Zhu,
  • Chuanyang Liang

DOI
https://doi.org/10.3390/buildings14072055
Journal volume & issue
Vol. 14, no. 7
p. 2055

Abstract

Read online

Predicting soil deformation is critical for the success of building construction projects. The traditional methods used for this task, which rely on theoretical calculations and numerical simulations, require detailed information on soil characteristics and geological conditions. These essential details are often challenging to obtain in practical engineering, thereby limiting the accuracy of these methods in building construction contexts. Deep learning (DL) provides a direct approach for modeling soil deformation without having a detailed understanding of the soil properties and geological conditions. However, the existing DL algorithms mainly focus on modeling deformation directly. With advancements in monitoring technology, integrating diverse monitoring data has become crucial for accurately predicting deformation, a need often overlooked in current practices. This paper introduces a monitoring data fusion (MDF) model aimed at enhancing the utilization efficiency of diverse monitoring data. Validated against real-world engineering scenarios, this model significantly outperforms traditional single-feature and multi-feature long short-term memory (LSTM) models. It achieves a mean absolute percentage error (MAPE) of approximately 2.12%, representing reductions of 30% and 63%, and a root mean square error (RMSE) of around 12.5 mm, with reductions of 36% and 77%. Additionally, the DL interpretability method, Shapley additive explanations (SHAP), is utilized to elucidate how various model features contribute to generating predictions.

Keywords