Journal of Ophthalmic & Vision Research (Jan 2018)

Trichostatin a restores expression of adherens and tight junction proteins during transforming growth factor β-mediated epithelial-to-mesenchymal transition

  • Darshini A Ganatra,
  • Abhay R Vasavada,
  • Nair G Vidya,
  • Devarshi U Gajjar,
  • Sankaranarayanan Rajkumar

DOI
https://doi.org/10.4103/jovr.jovr_110_17
Journal volume & issue
Vol. 13, no. 3
pp. 274 – 283

Abstract

Read online

Purpose: Adherens junctions and polarity markers play an important role in maintaining epithelial phenotype but get altered during the epithelial-mesenchymal transition (EMT). Alterations of these markers during EMT of lens epithelial cell (LEC) can lead to vision compromising conditions. The aim of this study was to examine if Trichostatin-A (TSA), a histone deacetylase inhibitor, can prevent EMT by restoring the adherens junction complex in LEC. Methods: Fetal human lens epithelial cell line (FHL124) was used. Cells were treated with 10 ng/ml TGF-β2 in the presence or absence of TSA. Real time-PCR and western blotting were carried out for HDAC1, HDAC2, CDH1 (E-cad), TJP1 ( ZO-1) and CTNNB1 (β-cat). Level of histone acetylation was analyzed by western blotting. Chromatin Immunoprecipitation was carried out to study the level of acetylated histone H4 and HDAC2 at the promoter regions of CDH1, TJP1, and CTNNB1. E-cad, ZO-1, and β-cat were localized using immunofluorescence. Kruskal-Wallis test was used for statistical analysis. Results: TSA down-regulated HDAC1 and HDAC2 and led to an increase in global acetylation. The mRNA and protein levels of E-cad, ZO-1, and β-cat decreased during EMT but were up-regulated by TSA treatment. TSA also helped in stabilizing these proteins at cell-cell junctions during EMT. TSA decreases association of HDAC2 at the promoter regions of adherens junction genes while increasing histone H4 acetylation status. Conclusion: TSA increases histone acetylation and restores the adherens junction complex in LECs. TSA helps in preventing EMT and thus shows potential against lens fibrosis and vision compromising conditions.

Keywords