Heliyon (Jun 2024)

Modified coconut shell biochars (MCSBCs): Fabrication and their adsorptions for Pb(II)

  • Jingyi Chen,
  • Qianqian Duan,
  • Chunyu Ji,
  • Junsheng Liu,
  • Ziyao Wang,
  • Jiahui Song,
  • Wei Li,
  • Chaojian Zhang

Journal volume & issue
Vol. 10, no. 11
p. e32422

Abstract

Read online

The modified coconut shell biochars (MCSBCs) were fabricated and their adsorptions for Pb(II) were evaluated, in which waste coconut shell was used as the raw material, both ZnCl2 and KMnO4 were applied as the inorganic modifiers. FT-IR spectra, TGA, SEM and BET techniques were utilized to characterize their properties. It was spotted that the thermal stability of UCSBC could arrive at 500 °C. The BET specific surface areas of both Zn- and Mn-modified MCSBCs (485.137, 476.734 m2/g) were highly decreased as compared with that of UCSBC (3528.78 m2/g). In contrast, the average pore diameters of both Zn- and Mn-modified MCSBCs (3.295, 3.803 nm) were smaller than that of UCSBC (3.814 nm). These findings reveal that the modification of CSBC didn't change its pore size. Their adsorptions for Pb(II) were performed and some controlling factors involving pH, contact time, starting concentration and temperature were explored. Moreover, the experiment data were fitted via linear and non-linear techniques. It was found that the Langmuir maximal adsorption amounts of un-modified coconut shell biochar (UCSBC), Zn-modified and Mn-modified MCSBCs for Pb(II) could reach 31.653, 86.547 and 93.666 mg/g, respectively. Two-parameter kinetic models exposed that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs obeyed both the Lagergren first-order (non-linear R2 = 0.990, 0.954, 0.953, respectively) and Avrami fractional-order (non-linear R2 = 0.989, 0.946, 0.945, respectively) kinetic models. Two-parameter and three-parameter isotherm models verified that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs followed the Langmuir (non-linear R2 = 0.992, 0.997, 0.993, respectively) as well as Sips (non-linear R2 = 0.992, 0.997, 0.992, respectively) isotherm models. The computation of thermodynamic parameters evidenced that the modification of UCSBC via KMnO4 and ZnCl2 can effectively rise its adsorption for Pb(II), exhibiting promising applications in the handling of metal-bearing water.

Keywords