Science and Technology of Nuclear Installations (Jan 2017)

Calculation of Lead-Iron Double-Layer Thickness for Gamma-Ray Shielding by MATLAB Program

  • Sarai Lekchaum,
  • Kitsakorn Locharoenrat

DOI
https://doi.org/10.1155/2017/6078461
Journal volume & issue
Vol. 2017

Abstract

Read online

This contribution is aimed at designing the optimal thickness of lead-iron double-layer container to store a radioactive waste releasing the photon energy at 1.3325 MeV and initial radiation intensity at 100 mSv/hr using the optimization design by MATLAB software. This design consisted of three parts of calculations to achieve 1000 times the radiation attenuation of container. The first was the logarithmic interpolation for the mass attenuation coefficient. The second was the bilogarithmic interpolation for the exposure buildup factor. The third was the contour-plotting analytical technique for the optimal thickness of radiation container. The values of mass attenuation coefficient and exposure buildup factor were exactly validated as compared with the standard reference database. Furthermore, we have found that the optimal thickness was 3.2 cm for lead (1st layer) and 17.0 cm for iron (2nd layer). Container weight was 994.30 kg, whilst container cost was 167.30 USD. The benefit of our design can quickly and precisely apply for the radiation safety assessment of the occupational radiation workers who always work in the nuclear reactor area.