Revista Chilena de Historia Natural (Jul 2022)
Rivers as a potential dispersing agent of the invasive tree Acacia dealbata
Abstract
Abstract Background The silver wattle Acacia dealbata is a fast-growing tree from Australia that has become naturalised in different regions of the world, attaining invasive status in most of them. In Chile, A. dealbata reaches large abundances along banks and floodplains of invaded fluvial systems, suggesting that rivers may act as a vector for seed dispersal. As hydrochory has not been documented previously in this species, the aim of this study is to evaluate the potential for water dispersal of seeds of this invasive tree along rivers. Methods Seed samples from rivers were collected at three sites along two A. dealbata-invaded rivers within the Cachapoal basin, central Chile. Number of seeds collected was contrasted versus hydraulic and local conditions with RDA. Seed buoyancy and sedimentation velocity were determined and compared between sites with an ANCOVA. Finally, the probability of seed germination after long periods of immersion in water was assessed, simulating transport conditions in the flow. Germination results were tested with a GLM. Results Results indicate that increasing abundance of A. dealbata seeds in the flow is related to the level of turbulence of the flow. Seeds display high floatability but their sedimentation velocity is high when they do sink. Finally, silver wattle seeds can germinate after long periods (many weeks) of immersion in water; however, their probability of germination depends to a large extent on whether seeds are scarified or not. Conclusions Based on the evidence collected, we suggest that the seeds of A. dealbata have the necessary traits to be dispersed by rivers, this being the first research testing this hypothesis. The success of hydrochory of A. dealbata would depend on river flow turbulence, and whether there are natural mechanisms for scarifying the seeds either before or during transport. The proposed methodology can be used to assess river hydrochory for any tree species.
Keywords