International Journal of Group Theory (Jun 2019)
On free subgroups of finite exponent in circle groups of free nilpotent algebras
Abstract
Let $K$ be a commutative ring with identity and $N$ the free nilpotent $K$-algebra on a non-empty set $X$. Then $N$ is a group with respect to the circle composition. We prove that the subgroup generated by $X$ is relatively free in a suitable class of groups, depending on the choice of $K$. Moreover, we get unique representations of the elements in terms of basic commutators. In particular, if $K$ is of characteristic $0$ the subgroup generated by $X$ is freely generated by $X$ as a nilpotent group.
Keywords