Machine Learning and Knowledge Extraction (Nov 2023)

A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS

  • Juan Terven,
  • Diana-Margarita Córdova-Esparza,
  • Julio-Alejandro Romero-González

DOI
https://doi.org/10.3390/make5040083
Journal volume & issue
Vol. 5, no. 4
pp. 1680 – 1716

Abstract

Read online

YOLO has become a central real-time object detection system for robotics, driverless cars, and video monitoring applications. We present a comprehensive analysis of YOLO’s evolution, examining the innovations and contributions in each iteration from the original YOLO up to YOLOv8, YOLO-NAS, and YOLO with transformers. We start by describing the standard metrics and postprocessing; then, we discuss the major changes in network architecture and training tricks for each model. Finally, we summarize the essential lessons from YOLO’s development and provide a perspective on its future, highlighting potential research directions to enhance real-time object detection systems.

Keywords