Mathematics (Jan 2023)
Feature Map Regularized CycleGAN for Domain Transfer
Abstract
CycleGAN domain transfer architectures use cycle consistency loss mechanisms to enforce the bijectivity of highly underconstrained domain transfer mapping. In this paper, in order to further constrain the mapping problem and reinforce the cycle consistency between two domains, we also introduce a novel regularization method based on the alignment of feature maps probability distributions. This type of optimization constraint, expressed via an additional loss function, allows for further reducing the size of the regions that are mapped from the source domain into the same image in the target domain, which leads to mapping closer to the bijective and thus better performance. By selecting feature maps of the network layers with the same depth d in the encoder of the direct generative adversarial networks (GANs), and the decoder of the inverse GAN, it is possible to describe their d-dimensional probability distributions and, through novel regularization term, enforce similarity between representations of the same image in both domains during the mapping cycle. We introduce several ground distances between Gaussian distributions of the corresponding feature maps used in the regularization. In the experiments conducted on several real datasets, we achieved better performance in the unsupervised image transfer task in comparison to the baseline CycleGAN, and obtained results that were much closer to the fully supervised pix2pix method for all used datasets. The PSNR measure of the proposed method was, on average, 4.7% closer to the results of the pix2pix method in comparison to the baseline CycleGAN over all datasets. This also held for SSIM, where the described percentage was 8.3% on average over all datasets.
Keywords