Sensors (Dec 2024)

Event-Based Visual/Inertial Odometry for UAV Indoor Navigation

  • Ahmed Elamin,
  • Ahmed El-Rabbany,
  • Sunil Jacob

DOI
https://doi.org/10.3390/s25010061
Journal volume & issue
Vol. 25, no. 1
p. 61

Abstract

Read online

Indoor navigation is becoming increasingly essential for multiple applications. It is complex and challenging due to dynamic scenes, limited space, and, more importantly, the unavailability of global navigation satellite system (GNSS) signals. Recently, new sensors have emerged, namely event cameras, which show great potential for indoor navigation due to their high dynamic range and low latency. In this study, an event-based visual–inertial odometry approach is proposed, emphasizing adaptive event accumulation and selective keyframe updates to reduce computational overhead. The proposed approach fuses events, standard frames, and inertial measurements for precise indoor navigation. Features are detected and tracked on the standard images. The events are accumulated into frames and used to track the features between the standard frames. Subsequently, the IMU measurements and the feature tracks are fused to continuously estimate the sensor states. The proposed approach is evaluated using both simulated and real-world datasets. Compared with the state-of-the-art U-SLAM algorithm, our approach achieves a substantial reduction in the mean positional error and RMSE in simulated environments, showing up to 50% and 47% reductions along the x- and y-axes, respectively. The approach achieves 5–10 ms latency per event batch and 10–20 ms for frame updates, demonstrating real-time performance on resource-constrained platforms. These results underscore the potential of our approach as a robust solution for real-world UAV indoor navigation scenarios.

Keywords