Advances in Difference Equations (May 2019)
The global solution of anisotropic fourth-order Schrödinger equation
Abstract
Abstract This paper studies the global existence of solutions in Sobolev space for anisotropic fourth-order Schrödinger type equation: iut+Δu+a∑i=1duxixixixi+b|u|αu=0 $iu_{t}+\Delta u+a\sum_{i=1}^{d}u_{x_{i} x_{i} x_{i} x_{i}}+b|u|^{ \alpha }u=0$, x∈Rn $x\in R^{n}$, t∈R $t\in R$, 1≤d<n $1\leq d< n$ under the initial conditions: u(x,0)=φ(x) $u(x,0)=\varphi (x)$, x∈Rn $x\in R^{n}$. By using the Banach fixed point theorem, we obtain the existence, the uniqueness, the continuous dependence and the decay estimate of the solution on the initial value in anisotropic Sobolev spaces Hy→s1,ρHz→s2,r $H_{\vec{y}}^{s_{1},\rho } H_{\vec{z}} ^{s_{2},r}$.
Keywords