Open Life Sciences (Sep 2022)
Geometric basis of action potential of skeletal muscle cells and neurons
Abstract
Although we know something about single-cell neuromuscular junctions, it is still unclear how multiple skeletal muscle cells coordinate to complete intricate spatial curve movement. Here, we hypothesize that skeletal muscle cell populations with action potentials are aligned according to curved manifolds in space (a curved shape in space). When a specific motor nerve impulse is transmitted, the skeletal muscle also moves according to the corresponding shape (manifolds). The action potential of motor nerve fibers has the characteristics of a time curve manifold, and this time-manifold curve of motor nerve fibers comes from the visual cortex in which spatial geometric manifolds are formed within the synaptic connection of neurons. This spatial geometric manifold of the synaptic connection of neurons originates from spatial geometric manifolds outside nature that are transmitted to the brain through the cone cells and ganglion cells of the retina. The essence of life is that life is an object that can move autonomously, and the essence of life’s autonomous movement is the movement of proteins. Theoretically, because of the infinite diversity of geometric manifold shapes in nature, the arrangement and combination of 20 amino acids should have infinite diversity, and the geometric manifold formed by the protein three-dimensional spatial structure should also have infinite diversity.
Keywords