Cerâmica (Dec 2009)

Determinação das energias de superfície do SnO2 puro e dopado Surface energy of pure and doped tin oxide

  • R. H. R. Castro,
  • P. Hidalgo,
  • D. Gouvea,
  • A. Navrotsky

DOI
https://doi.org/10.1590/S0366-69132009000400002
Journal volume & issue
Vol. 55, no. 336
pp. 342 – 348

Abstract

Read online

A calorimetria tem se mostrado uma importante ferramenta para o controle e entendimento de comportamentos de sistemas nanoestruturados. Isto se deve basicamente às recentes medidas de energia de superfície reportadas na literatura; isto é, como em sistemas nanométricos a superfície tem uma maior contribuição na energia livre total do sistema, o conhecimento desta entalpia é fundamental para alcançar o controle desejado. No entanto, procedimentos calorimétricos para medida da energia de superfície são relativamente complexos e, se fosse possível estimar a energia de superfície por métodos alternativos, isto poderia ser de grande importância para o desenvolvimento da nanociência. Neste trabalho a energia de superfície do SnO2 é apresentada por medida de calorimetria de dissolução e corrigida por calorimetria de adsorção de água. Após isso, uma discussão sobre a influência de aditivos iônicos na área de superfície específica do SnO2 é apresentada. Quando os aditivos iônicos formam excesso de superfície no SnO2, a área de superfície aumenta mesmo considerando o aumento difusional esperado. Isto pode ser relacionado com a diminuição da energia de superfície pelos aditivos devido ao excesso de superfície como previsto por Gibbs. Baseado nesta premissa e utilizando o valor medido de energia de superfície do SnO2, as medidas de área de superfície dos pós dopados são utilizadas para calcular a energia de superfície de pós dopados com Ni, Fe, Cr e Mg.Calorimetry has been proved to be an important tool to control and understand the behavior of nanostructured systems. This is basically because of the recent surface energy measurements reported in the literature by high-temperature calorimetry. That is, since in nanosized systems the surface accounts for a larger part of the total atoms, knowing their energy is of main importance to achieve a desired control. However, calorimetric procedures to measure the surface energy are relatively complex and, if it were possible to estimate the surface energy using alternative techniques, this could have giant impacts in the nanoscience and nanotechnology. In this work, the anhydrous surface energy of SnO2 is presented to be 3.2 J/m² measured by drop solution calorimetry corrected by water adsorption. After this, a discussion of the effect of some additives in the SnO2 nanostructure is presented. It is established that additives that form surface excess can decrease the surface energy in addition to modifications in the diffusion parameters. Considering a particle growth model, we could calculate the surface energy of SnO2 doped with Mg, Fe, Cr, and Ni.

Keywords