Engineering Microbiology (Jun 2024)

O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis

  • Baixin Lin,
  • Dashan Zhang,
  • Junbo Wang,
  • Yongjian Qiao,
  • Jinjin Wang,
  • Zixin Deng,
  • Lingxin Kong,
  • Delin You

Journal volume & issue
Vol. 4, no. 2
p. 100150

Abstract

Read online

Carbazomycins (1–8) are a subgroup of carbazole derivatives that contain oxygen at the C3 and C4 positions and an unusual asymmetric substitution pattern. Several of these compounds exhibit antifungal and antioxidant activities. To date, no systematic biosynthetic studies have been conducted on carbazomycins. In this study, carbazomycins A and B (1 and 2) were isolated from Streptomyces luteosporeus NRRL 2401 using a one-strain-many-compound (OSMAC)-guided natural product mining screen. A biosynthetic gene cluster (BGC) was identified, and possible biosynthetic pathways for 1 and 2 were proposed. The in vivo genetic manipulation of the O-methyltransferase-encoding gene cbzMT proved indispensable for 1 and 2 biosynthesis. Size exclusion chromatography indicated that CbzMT was active as a dimer. In vitro biochemical assays confirmed that CbzMT could repeatedly act on the hydroxyl groups at C3 and C4, producing monomethylated 2 and dimethylated 1. Monomethylated carbazomycin B (2) is not easily methylated; however, CbzMT seemingly prefers the dimethylation of the dihydroxyl substrate (12) to 1, even with a low conversion efficiency. These findings not only improve the understanding of carbazomycin biosynthesis but also expand the inventory of OMT-catalyzing iterative methylations on different acceptor sites, paving the way for engineering biocatalysts to synthesize new active carbazomycin derivatives.

Keywords