Energies (Apr 2022)

Integration and Verification of PLUG-N-HARVEST ICT Platform for Intelligent Management of Buildings

  • Christos Korkas,
  • Asimina Dimara,
  • Iakovos Michailidis,
  • Stelios Krinidis,
  • Rafael Marin-Perez,
  • Ana Isabel Martínez García,
  • Antonio Skarmeta,
  • Konstantinos Kitsikoudis,
  • Elias Kosmatopoulos,
  • Christos-Nikolaos Anagnostopoulos,
  • Dimitrios Tzovaras

DOI
https://doi.org/10.3390/en15072610
Journal volume & issue
Vol. 15, no. 7
p. 2610

Abstract

Read online

THe energy-efficient operation of microgrids—a localized grouping of consuming loads (domestic appliances, EVs, etc.) with distributed energy sources such as solar photovoltaic panels—suggests the deployment of Energy Management Systems (EMSs) that enable the actuation of controllable microgrid loads coupled with Artificial Intelligence (AI) tools. Such tools are capable of optimizing the aggregated performance of the microgrid in an automated manner, based on an extensive network of Advanced Metering Infrastructure (AMI). Modular adaptable/dynamic building envelope (ADBE) solutions have been proven an effective solution—exploiting free façade areas instead of roof areas—for extending the thermal inertia and energy harvesting capacity in existing buildings of different nature (residential, commercial, industrial, etc.). This study presents the PLUG-N-HARVEST holistic workflow towards the delivery of an automatically controllable microgrid integrating active ADBE technologies (e.g., PVs, HVACs). The digital platform comprises cloud AI services and functionalities for energy-efficient management, data healing/cleansing, flexibility forecasting, and the security-by-design IoT to efficiently optimize the overall performance in near-zero energy buildings and microgrids. The current study presents the effective design and necessary digital integration steps towards the PLUG-N-HARVEST ICT platform alongside real-life verification test results, validating the performance of the platform.

Keywords