Energies (Jan 2021)

Finite Element Analysis on Shear Behavior of High-Strength Bolted Connectors under Inverse Push-Off Loading

  • Wei Wang,
  • Xie-dong Zhang,
  • Fa-xing Ding,
  • Xi-long Zhou

DOI
https://doi.org/10.3390/en14020479
Journal volume & issue
Vol. 14, no. 2
p. 479

Abstract

Read online

High-strength bolted shear connectors (HSBSCs), which can be demounted easily and efficiently during deconstruction, are recommended to replace the conventional steel studs in steel–concrete composite beams (SCCBs) to meet the requirements of sustainable development. The existing investigations on the behavior of HSBSCs mainly focus on the positive moment area of composite beams, in which the concrete slab is in compress condition. In this paper, a three-dimensional finite element model (FEM) was developed to investigate the performance of HSBSCs subjected to inverse push-off loading. Material nonlinearities and the interactions among all components were included in the FEM. The accuracy and reliability of the proposed FEM were initially validated against the available push-off test results. Load-carrying capacity and load–slip response of the HSBSCs under inverse push-off loading were further studied by the verified FEM. A parametric study was carried out to determine the influence of the concrete strength, the diameter and tensile strength of bolt and the clearance between the concrete slab and the bolt as well as the bolt pretension on the shear performance of HSBSCs. Based on the extensive parametric analyses, design recommendations for estimating the shear load at the first slip and load-bearing resistance of HSBSCs were proposed and verified.

Keywords