Sensors (Feb 2022)

A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss

  • Chen Wang,
  • Xiaoming Liu,
  • Zhixiang Huang,
  • Shuo Yu,
  • Xiaofan Yang,
  • Xiaobang Shang

DOI
https://doi.org/10.3390/s22051764
Journal volume & issue
Vol. 22, no. 5
p. 1764

Abstract

Read online

This paper reports on a sensor based on multi-element complementary split-ring resonator for the measurement of liquid materials. The resonator consists of three split rings for improved measurement sensitivity. A hole is fabricated at the centre of the rings to accommodate a hollow glass tube, through which the liquid sample can be injected. Electromagnetic simulations demonstrate that both the resonant frequency and quality factor of the sensor vary considerably with the dielectric constant and loss tangent of the liquid sample. The volume ratio between the liquid sample and glass tube is 0.36, yielding great sensitivity in the measured results for high loss liquids. Compared to the design based on rectangular split rings, the proposed ring structure offers 37% larger frequency shifts and 9.1% greater resonant dips. The relationship between dielectric constant, loss tangent, measured quality factor and resonant frequency is derived. Experimental verification is conducted using ethanol solution with different concentrations. The measurement accuracy is calculated to be within 2.8%, and this validates the proposed approach.

Keywords