PLoS Biology (Jan 2022)

Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage.

  • Yannik Bollen,
  • Joris H Hageman,
  • Petra van Leenen,
  • Lucca L M Derks,
  • Bas Ponsioen,
  • Julian R Buissant des Amorie,
  • Ingrid Verlaan-Klink,
  • Myrna van den Bos,
  • Leon W M M Terstappen,
  • Ruben van Boxtel,
  • Hugo J G Snippert

DOI
https://doi.org/10.1371/journal.pbio.3001527
Journal volume & issue
Vol. 20, no. 1
p. e3001527

Abstract

Read online

CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids.