Energies (Sep 2017)

Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump

  • Jun-Won Suh,
  • Jin-Woo Kim,
  • Young-Seok Choi,
  • Jin-Hyuk Kim,
  • Won-Gu Joo,
  • Kyoung-Yong Lee

DOI
https://doi.org/10.3390/en10091334
Journal volume & issue
Vol. 10, no. 9
p. 1334

Abstract

Read online

Most multi-phase pumps used in crude oil production have been developed to satisfy certain pressure specifications. In the design of these pumps, the flow characteristics of the posterior stage are different from those of the prior stage. For this reason, the design of the second stage needs to be supplemented. To optimize performance in this stage, multi-objective optimization to simultaneously increase pressure and efficiency is reported in this article. Flow analyses of the single and multiple phases of the multi-phase pump were conducted by solving three-dimensional steady Reynolds-averaged Navier–Stokes equations. For the numerical optimization, two design variables related to the blade inlet angle were selected. The impeller and the diffuser blades were optimized using a systematic optimization technique combined with a central composite method and a hybrid multi-objective evolutionary algorithm coupled with a surrogate model. The selected optimal model yielded better hydrodynamic performance than the base model, and reasons for this are investigated through internal flow field analysis.

Keywords