PLoS ONE (Jan 2019)

Applications of machine learning in decision analysis for dose management for dofetilide.

  • Andrew E Levy,
  • Minakshi Biswas,
  • Rachel Weber,
  • Khaldoun Tarakji,
  • Mina Chung,
  • Peter A Noseworthy,
  • Christopher Newton-Cheh,
  • Michael A Rosenberg

DOI
https://doi.org/10.1371/journal.pone.0227324
Journal volume & issue
Vol. 14, no. 12
p. e0227324

Abstract

Read online

BACKGROUND:Initiation of the antiarrhythmic medication dofetilide requires an FDA-mandated 3 days of telemetry monitoring due to heightened risk of toxicity within this time period. Although a recommended dose management algorithm for dofetilide exists, there is a range of real-world approaches to dosing the medication. METHODS AND RESULTS:In this multicenter investigation, clinical data from the Antiarrhythmic Drug Genetic (AADGEN) study was examined for 354 patients undergoing dofetilide initiation. Univariate logistic regression identified a starting dofetilide dose of 500 mcg (OR 5.0, 95%CI 2.5-10.0, p<0.001) and sinus rhythm at the start of dofetilide loading (OR 2.8, 95%CI 1.8-4.2, p<0.001) as strong positive predictors of successful loading. Any dose-adjustment during loading (OR 0.19, 95%CI 0.12-0.31, p<0.001) and a history coronary artery disease (OR 0.33, 95%CI 0.19-0.59, p<0.001) were strong negative predictors of successful dofetilide loading. Based on the observation that any dose adjustment was a significant negative predictor of successful initiation, we applied multiple supervised approaches to attempt to predict the dose adjustment decision, but none of these approaches identified dose adjustments better than a probabilistic guess. Principal component analysis and cluster analysis identified 8 clusters as a reasonable data reduction method. These 8 clusters were then used to define patient states in a tabular reinforcement learning model trained on 80% of dosing decisions. Testing of this model on the remaining 20% of dosing decisions revealed good accuracy of the reinforcement learning model, with only 16/410 (3.9%) instances of disagreement. CONCLUSIONS:Dose adjustments are a strong determinant of whether patients are able to successfully initiate dofetilide. A reinforcement learning algorithm informed by unsupervised learning was able to predict dosing decisions with 96.1% accuracy. Future studies will apply this algorithm prospectively as a data-driven decision aid.