Sensors (Apr 2024)

Identifying Characteristic Fire Properties with Stationary and Non-Stationary Fire Alarm Systems

  • Michał Wiśnios,
  • Sebastian Tatko,
  • Michał Mazur,
  • Jacek Paś,
  • Jarosław Mateusz Łukasiak,
  • Tomasz Klimczak

DOI
https://doi.org/10.3390/s24092772
Journal volume & issue
Vol. 24, no. 9
p. 2772

Abstract

Read online

The article reviews issues associated with the operation of stationary and non-stationary electronic fire alarm systems (FASs). These systems are employed for the fire protection of selected buildings (stationary) or to monitor vast areas, e.g., forests, airports, logistics hubs, etc. (non-stationary). An FAS is operated under various environmental conditions, indoor and outdoor, favourable or unfavourable to the operation process. Therefore, an FAS has to exhibit a reliable structure in terms of power supply and operation. To this end, the paper discusses a representative FAS monitoring a facility and presents basic tactical and technical assumptions for a non-stationary system. The authors reviewed fire detection methods in terms of fire characteristic values (FCVs) impacting detector sensors. Another part of the article focuses on false alarm causes. Assumptions behind the use of unmanned aerial vehicles (UAVs) with visible-range cameras (e.g., Aviotec) and thermal imaging were presented for non-stationary FASs. The FAS operation process model was defined and a computer simulation related to its operation was conducted. Analysing the FAS operation process in the form of models and graphs, and the conducted computer simulation enabled conclusions to be drawn. They may be applied for the design, ongoing maintenance and operation of an FAS. As part of the paper, the authors conducted a reliability analysis of a selected FAS based on the original performance tests of an actual system in operation. They formulated basic technical and tactical requirements applicable to stationary and mobile FASs detecting the so-called vast fires.

Keywords