Genes (Jun 2018)

Transcriptome-Wide Identification of an Aurone Glycosyltransferase with Glycosidase Activity from Ornithogalum saundersiae

  • Shuai Yuan,
  • Ming Liu,
  • Yan Yang,
  • Jiu-Ming He,
  • Ya-Nan Wang,
  • Jian-Qiang Kong

DOI
https://doi.org/10.3390/genes9070327
Journal volume & issue
Vol. 9, no. 7
p. 327

Abstract

Read online

Aurone glycosides display a variety of biological activities. However, reports about glycosyltransferases (GTs) responsible for aurones glycosylation are limited. Here, the transcriptome-wide discovery and identification of an aurone glycosyltransferase with glycosidase activity is reported. Specifically, a complementary DNA (cDNA), designated as OsUGT1, was isolated from the plant Ornithogalum saundersiae based on transcriptome mining. Conserved domain (CD)-search speculated OsUGT1 as a flavonoid GT. Phylogenetically, OsUGT1 is clustered as the same phylogenetic group with a putative 5,6-dihydroxyindoline-2-carboxylic acid (cyclo-DOPA) 5-O-glucosyltransferase, suggesting OsUGT1 may be an aurone glycosyltransferase. The purified OsUGT1 was therefore used as a biocatalyst to incubate with the representative aurone sulfuretin. In vitro enzymatic analyses showed that OsUGT1 was able to catalyze sulfuretin to form corresponding monoglycosides, suggesting OsUGT1 was indeed an aurone glycosyltransferase. OsUGT1 was observed to be a flavonoid GT, specific for flavonoid substrates. Moreover, OsUGT1 was demonstrated to display transglucosylation activity, transferring glucosyl group to sulfuretin via o-Nitrophenyl-β-d-glucopyranoside (oNP-β-Glc)-dependent fashion. In addition, OsUGT1-catalyzed hydrolysis was observed. This multifunctionality of OcUGT1 will broaden the application of OcUGT1 in glycosylation of aurones and other flavonoids.

Keywords