Frontiers in Psychology (Mar 2025)
Inter-limb and inter-agent coordination in an original joint-action game: exploring novel approaches for clinical practice
Abstract
After identifying a need to develop rehabilitation practices inspired from a systems perspective, we designed a joint-action game that involves both inter-limb and inter-agent coordination. The main specificity of our joint-action game lies in the informational and mechanical couplings that exist between the system elements—i.e., between lower limbs at one scale, and between agents at another scale. The present paper aims to investigate whether our joint-action game can foster the emergence of new coordination patterns at both scales, and discuss whether such patterns, if any, could be clinically relevant. Twelve dyads were asked to stand up on an unstable surface (BOSU) and to jointly manipulate a board on which a ball had to roll along a circular path containing target doors. Ball trajectory as well as lower limb and hand kinematics were obtained using an 8-camera motion capture system. Coordination between left and right knee joint angles was assessed through relative-phase and PCA analyses. Inter-agent coordination was evaluated using UCM analyses. The effects of amount of practice and performance on coordination were investigated. At both scales, significant coordination differences were found over practice and across levels of performance. More specifically, left and right knees were constrained to act as a single unit, while interpersonal synergies were observed in trials with better performance. We discussed how the exploration of coordinative solutions, as well as the dimensional reduction and reciprocal compensation among degrees of freedom that our game supports could be beneficially exploited in rehabilitation.
Keywords