Haematologica (Feb 2022)

YTHDF3 modulates hematopoietic stem cells by recognizing RNA m<sup>6</sup>A modification on <i>Ccnd1</i>

  • Xiaofei Zhang,
  • Tingting Cong,
  • Lei Wei,
  • Bixi Zhong,
  • Xiaowo Wang,
  • Jin Sun,
  • Shuxia Wang,
  • Meng Michelle Xu,
  • Ping Zhu,
  • Hong Jiang,
  • Jianwei Wang

DOI
https://doi.org/10.3324/haematol.2021.279739
Journal volume & issue
Vol. 107, no. 10

Abstract

Read online

Hematopoietic stem cells (HSC) give rise to the cells of the blood system over the whole lifespan. N6-methyladenosine (m6A), the most prevalent RNA modification, modulates gene expression via the processes of “writing” and “reading”. Recent studies showed that m6A “writer” genes (Mettl3 and Mettl14) play an essential role in HSC. However, which reader deciphers the m6A modification to modulate HSC remains unknown. In this study, we observed that dysfunction of Ythdf3 and Ccnd1 severely impaired the reconstitution capacity of HSC, which phenocopies Mettl3-deficient HSC. Dysfunction of Ythdf3 and Mettl3 results in a translational defect of Ccnd1. Ythdf3 and Mettl3 regulate HSC by transmitting m6A RNA methylation on the 5’ untranslated region of Ccnd1. Enforced Ccnd1 expression completely rescued the defect of Ythdf3-/- HSC and partially rescued Mettl3-compromised HSC. Taken together, this study identified, for the first time, that Ccnd1 is the target of METTL3 and YTHDF3 to transmit the m6A RNA methylation signal and thereby regulate the reconstitution capacity of HSC.