Applied and Environmental Soil Science (Jan 2021)

Soil Water Characteristics of Gleysols in the Bamenda (Cameroon) Wetlands and Implications for Agricultural Management Strategies

  • Alice Mufur Magha,
  • Primus Azinwi Tamfuh,
  • Lionelle Estelle Mamdem,
  • Marie Christy Shey Yefon,
  • Bertrand Kenzong,
  • Dieudonné Bitom

DOI
https://doi.org/10.1155/2021/6643208
Journal volume & issue
Vol. 2021

Abstract

Read online

Water budgeting in agriculture requires local soil moisture information as crops depend mainly on moisture available at root level. The present paper aims to evaluate the soil moisture characteristics of Gleysols in the Bamenda (Cameroon) wetlands and to evaluate the link between soil moisture content and selected soil characteristics affecting crop production. The work was conducted in the field and laboratory, and data were analyzed by simple descriptive statistics. The main results showed that the soils had a silty clayey to clayey texture, high bulk density, high soil organic carbon content, and high soil organic carbon stocks. The big difference between moisture contents at wilting point and at field capacity testified to very high plant-available water content. Also, the soils displayed very high contents of readily available water and water storage contents. The soil moisture characteristics give sigmoid curves and enabled noting that the Gleysols attain their full water saturation at a range of 57.68 to 91.70% of dry soil. Clay and SOC contents show a significant positive correlation with most of the soil moisture characteristics, indicating that these soil properties are important for soil water retention. Particle density, coarse fragments, and sand contents correlated negatively with the soil moisture characteristics, suggesting that they decrease soil water-holding capacity. The principal component analysis (PCA) enabled reducing 17 variables described to only three principal components (PCs) explaining 73.73% of the total variance; the first PC alone expressed 45.12% of the total variance, associating clay, SOC, and six soil moisture characteristics, thus portraying a deep correlation between these eight variables. Construction of contoured ditches, deep tillage, and raised ridges management techniques during the rainy season while channeling water from nearby water bodies into the farmland, opportunity cropping, and usage of water cans and other irrigation strategies are used during the dry season to combat water constraints.