Neurobiology of Disease (Apr 2007)
Neonatal hypoxic preconditioning involves vascular endothelial growth factor
Abstract
We studied hypoxic preconditioning (HxP) in the murine developing brain, focusing on the role for vascular endothelial growth factor (VEGF). Newborn mice were used as follows: (1) HxP (or normoxia) then intracerebral (i.c.) NMDA or AMPA-kainate agonist; (2) HxP then intraperitoneal (i.p.) anti-VEGFR2/Flk1 or anti-VEGFR1/Flt1 monoclonal blocking antibody (mAb) then i.c. NMDA/AMPA-kainate agonist; (3) i.p. VEGF then i.c. NMDA/AMPA-kainate agonist; and (4) in mutants lacking the hypoxia-responsive element (HRE) of the VEGF-A gene (VEGF∂/∂) and their wild-type littermates (VEGF+/+), HxP followed by i.c. NMDA agonist.HxP reduced the size of NMDA-related cortical and AMPA-kainate-related cortical and white matter excitotoxic lesions. Anti-VEGFR2/Flk1 mAb prevented HxP-induced neuroprotection. VEGF produced dose-dependent reduction in cortical lesions. HxP did not prevent, but instead exacerbated, brain lesions in VEGF∂/∂ mutants. Thus, exogenous as well as endogenous VEGF reduces excitotoxic brain lesions in the developing mouse. The VEGF/VEGFR2/Flk1 pathway is involved in the neuroprotective response to HxP.