Applied Sciences (Apr 2023)

Study on Thermal Error Modeling for CNC Machine Tools Based on the Improved Radial Basis Function Neural Network

  • Zhiming Feng,
  • Xinglong Min,
  • Wei Jiang,
  • Fan Song,
  • Xueqin Li

DOI
https://doi.org/10.3390/app13095299
Journal volume & issue
Vol. 13, no. 9
p. 5299

Abstract

Read online

The thermal error modeling technology of computer numerical control (CNC) machine tools is the core of thermal error compensation, and the machining accuracy of CNC machine tools can be improved effectively by the high-precision prediction model of thermal errors. This paper analyzes several methods related to thermal error modeling in the latest research applications, summarizes their deficiencies, and proposes a thermal error modeling method of CNC machine tool based on the improved particle swarm optimization (PSO) algorithm and radial basis function (RBF) neural network, named as IPSO-RBFNN. By introducing a compression factor to make the PSO algorithm balance between global and local search, the structure parameters of RBF neural network are optimized. Furthermore, in order to pick up the temperature-sensitive variables, an improved model, which combines the K-means clustering algorithm and correlation analysis method based on back propagation (BP) neural network is proposed. After the temperature-sensitive variables are selected, the IPSO-RBFNN method is adopted to establish the thermal error model for CNC machine tool. Based on the experimental data of the CNC machine tool under the name of DMG-DMU65, the predictive accuracy of the IPSO-RBFNN model in Z direction reaches 2.05 μm. Compared with other neural network method, it is improved by 10.48%, which indicates that it has better prediction ability. At last, the experiment verification for different thermal error terms at different velocities proves that this model has stronger robustness.

Keywords