Biomolecules (Jan 2023)

Nucleolar Architecture Is Modulated by a Small Molecule, the Inositol Pyrophosphate 5-InsP<sub>7</sub>

  • Soumyadip Sahu,
  • Jacob Gordon,
  • Chunfang Gu,
  • Mack Sobhany,
  • Dorothea Fiedler,
  • Robin E. Stanley,
  • Stephen B. Shears

DOI
https://doi.org/10.3390/biom13010153
Journal volume & issue
Vol. 13, no. 1
p. 153

Abstract

Read online

Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an ‘electrostatic glue’ that binds together positively charged surfaces on separate proteins, overcoming mutual protein–protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.

Keywords